

# ADVANCED SUBSIDIARY GCE MATHEMATICS

Further Pure Mathematics 1

4725

Candidates answer on the Answer Booklet

## OCR Supplied Materials:

- 8 page Answer Booklet
- List of Formulae (MF1)

Other Materials Required: None Thursday 15 January 2009 Morning

Duration: 1 hour 30 minutes



#### INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do **not** write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

## INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

1 Express  $\frac{2+3i}{5-i}$  in the form x + iy, showing clearly how you obtain your answer. [4]

2 The matrix **A** is given by 
$$\mathbf{A} = \begin{pmatrix} 2 & 0 \\ a & 5 \end{pmatrix}$$
. Find  
(i)  $\mathbf{A}^{-1}$ , [2]

(ii) 
$$2\mathbf{A} - \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix}$$
. [2]

- 3 Find  $\sum_{r=1}^{n} (4r^3 + 6r^2 + 2r)$ , expressing your answer in a fully factorised form. [6]
- 4 Given that A and B are  $2 \times 2$  non-singular matrices and I is the  $2 \times 2$  identity matrix, simplify

$$\mathbf{B}(\mathbf{A}\mathbf{B})^{-1}\mathbf{A} - \mathbf{I}.$$
 [4]

5 By using the determinant of an appropriate matrix, or otherwise, find the value of k for which the simultaneous equations

$$2x - y + z = 7,3y + z = 4,x + ky + kz = 5,$$

do not have a unique solution for x, y and z.

- 6 (i) The transformation P is represented by the matrix  $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ . Give a geometrical description of transformation P. [2]
  - (ii) The transformation Q is represented by the matrix  $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ . Give a geometrical description of transformation Q. [2]
  - (iii) The transformation R is equivalent to transformation P followed by transformation Q. Find the matrix that represents R. [2]
  - (iv) Give a geometrical description of the single transformation that is represented by your answer to part (iii).
- 7 It is given that  $u_n = 13^n + 6^{n-1}$ , where *n* is a positive integer.
  - (i) Show that  $u_n + u_{n+1} = 14 \times 13^n + 7 \times 6^{n-1}$ . [3]
  - (ii) Prove by induction that  $u_n$  is a multiple of 7. [4]

2

[5]

8 (i) Show that  $(\alpha - \beta)^2 \equiv (\alpha + \beta)^2 - 4\alpha\beta$ . [2]

The quadratic equation  $x^2 - 6kx + k^2 = 0$ , where k is a positive constant, has roots  $\alpha$  and  $\beta$ , with  $\alpha > \beta$ .

- (ii) Show that  $\alpha \beta = 4\sqrt{2k}$ . [4]
- (iii) Hence find a quadratic equation with roots  $\alpha + 1$  and  $\beta 1$ . [4]
- 9 (i) Show that  $\frac{1}{2r-3} \frac{1}{2r+1} = \frac{4}{4r^2 4r 3}$ . [2]
  - (ii) Hence find an expression, in terms of *n*, for

$$\sum_{r=2}^{n} \frac{4}{4r^2 - 4r - 3}.$$
 [6]

(iii) Show that 
$$\sum_{r=2}^{\infty} \frac{4}{4r^2 - 4r - 3} = \frac{4}{3}$$
. [1]

- 10 (i) Use an algebraic method to find the square roots of the complex number  $2 + i\sqrt{5}$ . Give your answers in the form x + iy, where x and y are exact real numbers. [6]
  - (ii) Hence find, in the form x + iy where x and y are exact real numbers, the roots of the equation

$$z^4 - 4z^2 + 9 = 0.$$
 [4]

- (iii) Show, on an Argand diagram, the roots of the equation in part (ii). [1]
- (iv) Given that  $\alpha$  is the root of the equation in part (ii) such that  $0 < \arg \alpha < \frac{1}{2}\pi$ , sketch on the same Argand diagram the locus given by  $|z \alpha| = |z|$ . [3]

# **4725 Further Pure Mathematics 1**

| 1 |                                                                  | M1       |   | Multiply by conjugate of denominator                |
|---|------------------------------------------------------------------|----------|---|-----------------------------------------------------|
|   |                                                                  | A1 A1    |   | Obtain correct numerator                            |
|   | $\frac{7}{26} + \frac{17}{26}$ i.                                | A1       | 4 | Obtain correct denominator                          |
|   | 26 26                                                            |          | 4 |                                                     |
| 2 | (5 0)                                                            | B1       |   | Both diagonals correct                              |
|   | (i) $\frac{1}{10} \begin{pmatrix} 5 & 0 \\ -a & 2 \end{pmatrix}$ | B1       | 2 | Divide by correct determinant                       |
|   | (-u 2)                                                           |          |   |                                                     |
|   | (3 - 2)                                                          | B1       |   | Two elements correct                                |
|   | (ii) $\begin{bmatrix} 2 & -2 \\ 2a & 6 \end{bmatrix}$            | B1       | 2 | Remaining elements correct                          |
|   |                                                                  |          | 4 |                                                     |
| 3 |                                                                  | M1       |   | Express as sum of 3 terms                           |
|   | $n^{2}(n+1)^{2} + n(n+1)(2n+1) + n(n+1)$                         | A1       |   | 2 correct unsimplified terms                        |
|   |                                                                  | A1       |   | 3 <sup>rd</sup> correct unsimplified term           |
|   | $n(n+1)^2(n+2)$                                                  | M1       |   | Attempt to factorise                                |
|   |                                                                  | Alft     |   | Two factors found, ft their quartic                 |
|   |                                                                  | A1       | 6 | Correct final answer a.e.f.                         |
| 4 |                                                                  | B1       | 6 | State or use correct result                         |
| 4 |                                                                  | M1       |   | Combine matrix and its inverse                      |
|   | (0, 0)                                                           | A1       |   | Obtain I or $I^2$ but not 1                         |
|   | $\begin{pmatrix} 0 & 0 \end{pmatrix}$                            | A1<br>A1 | 4 | Obtain zero <b>matrix</b> but not 0                 |
|   |                                                                  | AI       | 4 | S.C. If $0/4$ , B1 for $AA^{-1} = I$                |
| 5 | Either                                                           | M1       |   | Consider determinant of coefficients of LHS         |
| 5 |                                                                  | M1       |   | Sensible attempt at evaluating any $3 \times 3$ det |
|   | 4k - 4                                                           | Al       |   | Obtain correct answer a.e.f. unsimplified           |
|   |                                                                  | M1       |   | Equate det to 0                                     |
|   | k = 1                                                            | A1ft     | 5 | Obtain $k = 1$ , ft provided all M's awarded        |
|   |                                                                  |          |   | ······································              |
|   | Or                                                               | M1       |   | Eliminate either x or y                             |
| 1 |                                                                  | A1       |   | Obtain correct equation                             |
|   |                                                                  | M1       |   | Eliminate 2 <sup>nd</sup> variable                  |
|   |                                                                  | A1       |   | Obtain correct linear equation                      |
|   |                                                                  | A1       |   | Deduce that $k = 1$                                 |
|   |                                                                  |          | 5 |                                                     |
| 6 | (i) Either                                                       | B1 DB1   | 2 | Reflection, in x-axis                               |
|   | Or                                                               | B1 DB1   |   | Stretch parallel to <i>y</i> -axis, s.f. –1         |
|   |                                                                  |          | ~ |                                                     |
|   | (ii)                                                             | B1 DB1   | 2 | Reflection, in $y = -x$                             |
|   | (iii) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$            | D1 D1    | 2 | Each column correct                                 |
|   | $\begin{pmatrix} \mathbf{u} \\ -1 & 0 \end{pmatrix}$             | B1 B1    | 2 | Each column correct                                 |
|   | (iv)                                                             | B1B1B1   | 3 | Rotation, $90^{\circ}$ , clockwise about O          |
|   |                                                                  |          | 9 | S.C. If (iii) incorrect, B1 for identifying         |
|   |                                                                  |          |   | their transformation, B1 all details correct        |
| L | l                                                                |          | I |                                                     |

| 7 | (ii)  | $3^n + 6^{n-1} + 13^{n+1} + 6^n$                                           | B1<br>M1<br>A1<br>B1<br>B1<br>B1<br>B1<br>B1 | 3<br>4<br>7 | Correct expression seen<br>Attempt to factorise both terms in (i)<br>Obtain correct expression<br>Check that result is true for $n = 1$ (or 2)<br>Recognise that (i) is divisible by 7<br>Deduce that $u_{n+1}$ is divisible by 7<br>Clear statement of Induction conclusion |
|---|-------|----------------------------------------------------------------------------|----------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | (i)   |                                                                            | M1<br>A1                                     | 2           | Expand at least 1 of the brackets<br>Derive given answer correctly                                                                                                                                                                                                           |
|   | (ii)  | $\alpha + \beta = 6k, \alpha\beta = k^{2}$ $\alpha - \beta = (4\sqrt{2})k$ | B1 B1<br>M1<br>A1                            | 4           | State or use correct values<br>Find value of $\alpha - \beta$ using (i)<br>Obtain given value correctly ( allow if $-6k$ used )                                                                                                                                              |
|   | (iii) | $\sum \alpha' = 6k$                                                        | B1ft                                         | •           | Sum of new roots stated or used                                                                                                                                                                                                                                              |
|   |       | $\alpha'\beta' = \alpha\beta - (\alpha - \beta) - 1$                       | M1                                           |             | Express new product in terms of old roots                                                                                                                                                                                                                                    |
|   |       | $\alpha'\beta' = k^2 - (4\sqrt{2})k - 1$                                   | A1ft                                         |             | Obtain correct value for new product                                                                                                                                                                                                                                         |
|   |       | $x^{2} - 6kx + k^{2} - (4\sqrt{2})k - 1 = 0$                               | B1ft                                         | 4<br>10     | Write down correct quadratic equation                                                                                                                                                                                                                                        |
| 9 | (i)   |                                                                            | M1<br>A1                                     | 2           | Use correct denominator<br>Obtain given answer correctly                                                                                                                                                                                                                     |
|   | (ii)  | $1 + \frac{1}{3} - \frac{1}{2n-1} - \frac{1}{2n+1}$                        | M1<br>M1<br>A1<br>A1<br>M1<br>A1             | 6           | Express terms as differences using (i)<br>Do this for at least $1^{st}$ 3 terms<br>First 3 terms all correct<br>Last 3 terms all correct ( in terms or <i>n</i> or <i>r</i> )<br>Show pairs cancelling<br>Obtain correct answer, a.e.f.( in terms of <i>n</i> )              |
|   | (iii) | $\frac{4}{3}$                                                              | B1ft                                         | 1<br>9      | Given answer deduced correctly, ft their (ii)                                                                                                                                                                                                                                |

| 10 | (i) $x^2 - y^2 = 2,2xy = \sqrt{5}$<br>$4x^4 - 8x^2 - 5 = 0$                            | M1<br>A1<br>M1         |         | Attempt to equate real and imaginary parts<br>Obtain both results a.e.f.<br>Eliminate to obtain quadratic in $x^2$ or $y^2$                |
|----|----------------------------------------------------------------------------------------|------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                        | M1                     |         | Solve to obtain $x$ (or y) values                                                                                                          |
|    | $x = \pm \frac{\sqrt{10}}{2}, y = \pm \frac{\sqrt{2}}{2}$                              | A1                     |         | Correct values for both x & y obtained a.e.f.                                                                                              |
|    | $\pm \left(\frac{\sqrt{10}}{2} + i\frac{\sqrt{2}}{2}\right)$                           | A1                     | 6       | Correct answers as complex numbers                                                                                                         |
|    | (ii) $z^2 = 2 \pm i\sqrt{5}$<br>$z = \pm(\frac{\sqrt{10}}{2} \pm i\frac{\sqrt{2}}{2})$ | M1<br>A1<br>M1<br>A1ft | 4       | Solve quadratic in $z^2$<br>Obtain correct answers<br>Use results of (i)<br>Obtain correct answers, ft must include root<br>from conjugate |
|    | (iii)                                                                                  | B1ft                   | 1       | Sketch showing roots correctly                                                                                                             |
|    | (iv)                                                                                   | B1 B1ft<br>B1ft        | 3<br>14 | Sketch of straight line, $\perp$ to $\alpha$<br>Bisector                                                                                   |